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ABSTRACT
Disrupted operation of the reward circuitry underlies many aspects of affective disorders. Such disruption may
manifest as aberrant behavior including risk taking, depression, anhedonia, and addiction. Early-life adversity is a
common antecedent of adolescent and adult affective disorders involving the reward circuitry. However, whether
early-life adversity influences the maturation and operations of the reward circuitry, and the potential underlying
mechanisms, remain unclear. Here, we present novel information using cutting-edge technologies in animal models
to dissect out the mechanisms by which early-life adversity provokes dysregulation of the complex interactions of
stress and reward circuitries. We propose that certain molecularly defined pathways within the reward circuitry are
particularly susceptible to early-life adversity. We examine regions and pathways expressing the stress-sensitive
peptide corticotropin-releasing factor (CRF), which has been identified in critical components of the reward cir-
cuitry and interacting stress circuits. Notably, CRF is strongly modulated by early-life adversity in several of these
brain regions. Focusing on amygdala nuclei and their projections, we provide evidence suggesting that aberrant CRF
expression and function may underlie augmented connectivity of the nucleus accumbens with fear/anxiety regions,
disrupting the function of this critical locus of pleasure and reward.
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Early-life adversity is a common antecedent of adolescent and
adult affective disorders involving disrupted operation of the
reward circuitry. These include anhedonia, depression,
excessive risk taking (gambling), and drug and alcohol addic-
tion. However, whether early-life adversity influences the
maturation and operations of the reward circuitry, and the
potential underlying mechanisms, remains unclear.

The vulnerability of the developing (prenatal and early post-
natal) brain to adversity derives from the fact that the meso-
limbic reward circuitry undergoes significant growth, maturation,
and plasticity during this epoch (see Table 1). The nature of the
eventual psychopathology engendered by early-life adversity
may depend on the nature or type of the insults and the
developmental period in which they are experienced, as well as
clear and well-established genetic and epigenetic factors that
confer vulnerability to the insults. Indeed, genetics and early-life
adversity interact to modulate development of the reward cir-
cuitry, thus influencing its eventual functions (1,2). In this review,
we discuss reward circuit development and the mechanistic role
of adversity in disrupting the normal maturation of this circuitry,
conferring susceptibility to mental illness.

CAUSALITY OF EARLY-LIFE ADVERSITY AND
PSYCHOPATHOLOGY: A CONUNDRUM IN HUMANS
THAT REQUIRES EXPERIMENTAL PARADIGMS

Early-life adversity, including poverty and chaotic environment, is
associated with poor emotional outcomes and aberrant functional
N: 0006-3223
development of the reward system (3,4), but the origins and
mechanisms that underlie these observations are not fully under-
stood. Specifically, it is not possible in human studies to dissociate
genetics and environment. For example, poor parental care may
predict anxiety and depression, yet the parent endows the child
with both his/her behavior and DNA. Therefore, while well-
designed longitudinal human studies offer important clues and
insights, they cannot conclusively establish causality and mecha-
nisms (5). Thus, the use of animal models of early-life adversity is
required (6). Indeed, animalmodels for early-life adversity (or stress)
have been developed to probe the causal and mechanistic nature
of these important observations in humans.

NEW EXPERIMENTAL PARADIGMS ENABLE
IDENTIFYING CAUSALITY AND MECHANISMS OF
THE ROLE OF EARLY-LIFE ADVERSITY IN ABERRANT
MATURATION AND OPERATIONS OF THE REWARD
CIRCUITRY

The development of preclinical models for early-life adversity of-
fers scientists the ability to understand complex neural mecha-
nisms using techniques and approaches that are not possible in
humans. Indeed, numerous approaches have been used to
generate stress or adversity early in life, including the prenatal and/
or postnatal epochs considered sensitive (7). Maternal separation
has been used for decades to study the effects of such adversity/
stress, and several variants exist including daily short (3–4 hours)
separation or a single prolonged deprivation (8,9). These models
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Table 1. Development of Reward Circuitry Across Species

Reward Circuit

Species

Developmental Milestone Reference(s)Human Rodent

Ventral Tegmental Area 4 weeks’ gestation (first
trimester)

Rat: E14 Medial forebrain bundle
appears

(120,121)

5.5 weeks’ gestation (first
trimester)

Mouse: E8.5
Rat: E12.5

Tyrosine hydroxylase
detectable in ventral
mesencephalon

(122,123)

19 weeks’ gestation (second
trimester)

Mouse: E16
Rat: E18

Ventral tegmental area
dopaminergic neurons
distinguishable from
neighboring groups

(124,125)

Nucleus Accumbens 10 weeks’ gestation (first
trimester)

Rat: E15 Nucleus accumbens appearsa (126,127)

12 weeks’ gestation (first
trimester)

Rat: E15 D1 receptor detectable in
striatum

(128,129)

3.5 postnatal months Rat: P11 Loss of acetylcholinesterase
striosomes in nucleus
accumbens

(130,131)

Amygdala 4 weeks’ gestation (first
trimester)

Mouse: E11
Rat: E13

Amygdala appearsa (132,133)

6 weeks’ gestation (first
trimester)

Rat: E17 Basolateral nuclear group is
identifiable

(134,135)

12.5–16 weeks’ gestation
(second trimester)

Mouse: E11–E15
Rat: E15–E19

Lateral amygdala generation (133,136)

30 weeks’ gestation (third
trimester)

Rat: E13 Pyramidal neurons identifiable
in basolateral amygdala

(137,138)

Prefrontal Cortex 3.5 years Rat: P35 Peak prefrontal cortex synaptic
density

(139,140)

17–25 years Rat: P90 Synaptogenesis and
myelination complete

(141)

Connectivity 8 weeks’ gestation (first
trimester)

Mouse: E10
Rat: E14

Dorsal thalamocortical
radiations appear

(142,143)

26–32 weeks’ gestation (third
trimester)

Mouse: E15
Rat: E16

Thalamocortical afferents
reach the cortical plate

(144,145)

Functions 2 months Mouse: P3
Rat: P1

Emergence of appetitive
learning

(146,147)

Newborn Rat: P6 Emergence of sucrose
preference

(148,149)

9 months to 1 year Rat: P14–P28 Emergence of social play (150)

E, embryonic day; P, postnatal day.
aInitial appearance on histological sections in humans, neurogenesis onset in rodents.
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have generally yielded deficits in cognitive abilities (10–12), as well
as anxiety-like and depression-like behaviors (13,14) and
addiction-like behaviors (15,16). Aiming to generate a naturalistic,
highly reproducible model for early-life adversity, a paradigm of
simulated poverty, using cages with limited bedding and nesting
material in rodents, has been devised and used extensively
around the world (7,17,18). This environment strongly disrupts
caring behaviors in rodent dams and thus the sensory signals
received by the developing pups. Whereas the overall duration
and quality of maternal care remain unaltered, the pattern of
caregiving is fragmented and unpredictable (17,19,20). The frag-
mented, unpredictable sequences of maternal care cause chronic
stress in the pups, which dissipates upon returning dams to
normal bedded cages at the end of the 1-week exposure. How-
ever, aberrant brain circuit maturation is generated in the pups,
evident on magnetic resonance imaging (MRI) (21) and mani-
festing as impaired memory (22,23) as well as specific deficits in
2 Biological Psychiatry - -, 2020; -:-–- www.sobp.org/journal
emotional-like behaviors (20,24). Here, we focus on alterations of
the reward circuitry and their behavioral manifestations.

THE REWARD CIRCUITRY AND ITS DEVELOPMENT

Overview

Reward processing encompasses the biological and behavioral
functions to drive the acquisition of rewarding stimuli (25,26).
The hypothalamus is central to processing basic rewards,
whereas higher cortical and subcortical forebrain structures are
engaged when complex choices about these fundamental
needs are required. The reward circuitry is a complex entity that
includes the prefrontal cortex, nucleus accumbens (NAc),
ventral tegmental area (VTA), amygdala, and hippocampus
acting as a neural network to effectively assess the likely out-
comes of different choices. Studies have focused on the glu-
tamatergic and dopaminergic input pathways to the NAc, a key
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Figure 1. The reward circuitry in the human and
rodent brain. A schematic of the known major
dopaminergic, glutamatergic, and GABAergic con-
nections between the VTA, amygdala, NAc, HC, and
PFC in (A) the human and (B) the rodent brain. The
sine qua non of pleasure/reward in this system is a
release of dopamine in the NAc from terminals of
VTA-origin neurons. The NAc is further innervated by
glutamatergic projections from the PFC, amygdala,
and HC. A CRF1 projection from the basolateral
amygdala to the NAc has recently been identified.
Amyg, amygdala; CRF, corticotropin-releasing fac-
tor; GABAergic, gamma-aminobutyric acidergic; HC,
hippocampus; NAc, nucleus accumbens; PFC, pre-
frontal cortex; VTA, ventral tegmental area.
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brain region that integrates excitatory and inhibitory input to
signal the salience of rewarding stimuli (21,27–31). The primary
function of the NAc is to modulate the response to reward-
related cues, as well as the value of deviations of expected
versus actual reward outcomes, which are encoded via pro-
jections to and from the amygdala, thalamic nuclei, and pre-
frontal cortex (32–34) (Figure 1).

Development

A tremendous body of work has elucidated the connectivity,
operation, and function of the mature reward circuitry, yet
much remains unknown about the early development of this
system and of its functionality in both humans and experi-
mental models. This information is required in order to assess
the nature of the influence on the circuitry by early-life adverse
events, and the potential impact.

In addition, although a large majority of mechanistic studies
involve rodent models, there is a striking dearth of information
regarding the comparative early development and maturation
of the reward circuitry across species. Because the timing of
adversity critically influences the outcome, this lack of infor-
mation might result in imprecise inferences and difficulties in
translating major preclinical studies to the human. It is impor-
tant to note that because the development of distinct circuits
occurs at different time points and velocities across species
(35,36), it is not optimal to consider global “brain development”
across species. Hence, milestones such as neurogenesis,
synaptogenesis, connectivity, and specific functions of a given
circuit should be compared across species (Table 1). For
example, studies examining over 20 distinct milestones across
species suggest that for the hippocampal circuit, the state of
maturation of a 5- to 7-day-old Sprague Dawley rat seems to
approximate that of a human full-term neonate (35). As shown
in Table 1, such a comparison is far more difficult and complex
for milestones within the reward circuitry. The few studies that
exist use different methods across species, and the methods
employed in historical and current work have different sensi-
tivities. Yet, in the aggregate, it can be gleaned that reward
circuitry development during the first postnatal week in the
rodent may approximate that of a full-term human neonate.

NEUROTRANSMITTER PATHWAYS OF THE REWARD
CIRCUITRY

The role of dopamine in reward and motivated behaviors has
been extensively studied and reviewed (37–39). The ventral
B

striatum and dopaminergic neurons of the substantia nigra are
vital for processing reward. However, differential roles of
dopamine in motivational and hedonic components of reward
have been reported. For example, dopamine receptor antag-
onism in the NAc reduced the amount of effort an animal
expended to obtain a reward, whereas consumption and
positive hedonic responses remained intact (40,41). In addi-
tion, increased D2/D3 receptor availability in the ventral pal-
lidum, NAc, right ventral caudate, and putamen correlated with
the severity of anhedonia in clinically assessed patients with
depression (42). In rodents, incentive salience and instrumental
behaviors from rewarding cues were also driven by dopami-
nergic control (43,44). Together, these data support the notion
that dopamine in the NAc is required for motivation of reward
but not for hedonic experience and responsiveness to reward.
Instead, opioids and endocannabinoids act as major neuro-
chemical mediators of reward responsiveness (45–47).

The excitatory neurotransmitter glutamate plays a major role in
the function of the reward circuit (48). In the rodent, glutamate
projections to the NAc originate from cortical, thalamic, hippo-
campal, and amygdalar regions and function via AMPA, NMDA,
and metabotropic glutamate receptors (49). Further, blocking
NMDA and AMPA receptors impaired the conditioned rewarding
effects of drugs of abuse (50). In humans, reward processing–
driven ventral striatal activation correlated with hippocampal
glutamate levels (51), and in rodents, glutamatergic ventral pallidal
neurons increased activity in the lateral habenula, rostromedial
tegmental nucleus, and gamma-aminobutyric acid (GABA) VTA
neurons, which resulted in constrained reward seeking (52).

The involvement of dorsal raphe serotonin transporter ter-
minals, which synapse onto VTA dopaminergic neurons, has
also been implicated in driving rewarding behaviors. In ro-
dents, dorsal raphe serotonin fibers synapse on VTA dopa-
minergic neurons that coexpress VGlut3 (vesicular glutamate
transporter 3) and target the NAc to initiate a rapid release of
dopamine via dual serotonin-glutamate input (53), yet opto-
genetic activation of dorsal raphe serotonin neurons prolonged
the waiting time for future reward (54,55).

NEUROMODULATORS CONTRIBUTE TO
MOLECULAR-DEFINED PATHWAYS WITHIN THE
REWARD CIRCUITRY

In addition to classical neurotransmitters, several peptides
and neuromodulators are expressed in structures involved
with the reward circuitry. As noted above, opioids and
iological Psychiatry - -, 2020; -:-–- www.sobp.org/journal 3
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Figure 2. A CRF-expressing pathway between the BLA and the NAc. A Cre-driven retrograde adeno-associated virus (AAV2-retro-CAG-FLEX-tdTomato-
WPRE) was injected into the NAc of CRH-IRES-Cre mice. (A) Low- and (B) high-magnification images of CRF1 fiber terminals in the NAc core and shell.
(C) High-magnification image of antibody-immunolabeled CRF1 fiber terminals colocalized with virus-labeled CRF1 fiber terminals in the NAc. (D–F) The virus
retrogradely labels CRF1 cells in the BLA. (G) A low-magnification image of the NAc. The tdTomato reporter is shown in orange, immunostaining to confirm
CRF localization is shown in green. The section was counterstained with DAPI (blue). Scale bar = 200 mm in panels (A, D), 80 mm in panel (B), 35 mm in panels
(C, F), 40 mm in panel (E), and 60 mm in panel (G). ac, anterior commissure; BLA, basolateral amygdala; CeA, central nucleus of the amygdala; CRF,
corticotropin-releasing factor; LV, lateral ventricle; NAc, nucleus accumbens.

Reward Circuitry and Early-Life Adversity
Biological
Psychiatry
endocannabinoids act as major neurochemical mediators of
reward responsiveness (46,47). Several neuropeptides are
coexpressed in neurons within the reward circuitry (56,57), and
specifically within the NAc. These include orexin (58), neuro-
peptide Y (59), and corticotropin-releasing factor (CRF) and its
receptors CRF1 and CRF2 (60–63). More recently, Itoga et al.
(64), using viral genetic mapping and anterograde and retro-
grade tracing, mapped CRF-expressing projection sources to
the NAc in mice. Intriguingly, the authors identified an enrich-
ment of CRF-expressing inputs to the NAc from brain regions
involved in aspects of sensing, processing, and retrieval of
emotionally salient events. These findings are intriguing
because CRF, a stress-regulated peptide and a mediator of
stress, is poised to execute the effects of adversity, including
early-life adversity, on the reward circuitry (65–67).

THE ROLE OF CRF IN THE REWARD CIRCUITRY

CRF is an essential, evolutionarily conserved stress neuro-
peptide that is expressed in specific neuronal populations
throughout the brain to crucially modulate the functions of
several circuits, including those involved in processing of
emotion and cognition (68,69). CRF and its cognate receptors
have been shown to exhibit experience-dependent plasticity in
different nodes of the reward and stress circuitries such as the
amygdala, locus coeruleus, dorsal raphe, and hippocampus
(22,70–73). For instance, CRF in the NAc increases dopamine
release, promoting appetitive behavior, via CRF receptors that
have been identified in the rodent (74) and primate (75) NAc.
However, following prior stress exposure, CRF-mediated
dopamine release was abolished and the behavioral conse-
quence of CRF release in the NAc switched from appetitive to
aversive (61). Further, CRF in the NAc increased cholinergic
interneuron firing and acetylcholine tone (76,77), as well as
4 Biological Psychiatry - -, 2020; -:-–- www.sobp.org/journal
c-Fos activity (62) and phosphorylation of CREB (cAMP-
response element binding protein) in NAc medium spiny neu-
rons (78).

Whereas CRF-expressing fibers have been identified in the
NAc that originate from the basolateral amygdala, the function
of this basolateral amygdala–NAc pathway remains unclear
(Figure 2). Better information is available for other CRF-
expressing pathways: dopaminergic neurons coexpressing
CRF in the VTA drive the aversive effects of nicotine withdrawal,
activatingCRF1 receptors to block theGABAergic input to these
neurons (79). CRF-expressing projections between the amyg-
dala and VTA modulate dopamine release (65). A CRF-
expressing projection between the VTA and the hypothalamic
paraventricular nucleus has been identified (80), which is inter-
esting because CRF-expressing cells in the paraventricular
nucleus fire during aversive events, and their activity is
decreased in response to appetitive stimuli (81,82). Thus,
reward, such as palatable food, might relieve stress by specif-
ically targeting the CRF-expressing paraventricular nucleus
neurons. Recently, an additional role for CRF within the reward
circuitry has been identified. Following early-life adversity, CRF
messenger RNA and protein expression were augmented in
several nodes of the reward and stress circuitries, including the
amygdala and hippocampus (22,83). Concomitantly, adult rats
that experienced early-life adversity were rendered anhedonic in
several measures (Figure 3). Partial silencing of CRF in the
central amygdala resulted in reversal of this anhedonia (24),
further supporting a complex role for CRF-dependent modula-
tion of reward and motivational behaviors. Whereas the evi-
dence presented above is derived from animal models,
analogous functions of CRF in humans is supported by the
finding that genetic variations in the CRF1 receptor are linked to
stress-related psychiatric disorders (84–88).
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Figure 3. Early-life adversity induces anhedonia.
Rearing mice and rats in a model of simulated
poverty results in adolescent and adult anhedonia.
This is apparent as measured by reduced sucrose
and M&M consumption, as well as diminished social
play and hedonic set point for cocaine.
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FUNCTIONAL OUTPUT OF THE REWARD CIRCUITRY:
ANHEDONIA AS A READOUT

Anhedonia, defined as the reduced ability to experience
pleasure, is a prominent symptom of several neuropsychiatric
disorders and is considered a transdiagnostic marker for dis-
rupted function of the reward circuitry (89). In U.S. Marine
Corps recruits, anhedonia was identified as a predictor for
postcombat posttraumatic stress disorder (90) and a potent
harbinger of suicide (91). Notably, anhedonia is a predictor of
treatment outcome of cocaine dependence (92), chronic pain,
and prescription opioid use (93). Further support for altered
reward circuitry in anhedonia comes from imaging studies:
structural MRI revealed that smaller right NAc correlated with
anhedonic symptoms, and that left and right putamen volume
could predict the severity of present and future anhedonic
states (89).

EARLY-LIFE ADVERSITY INDUCES ANHEDONIA

Early-life adversity induced by simulated poverty and unpre-
dictable maternal behaviors resulted in decreased preference
for sweets (20,94), a reduction in social play (24,95), and a
reduced hedonic set point for cocaine (96) (Figure 3). All these
behaviors are considered manifestations of anhedonia in
B

rodents (20,97). Notably, maternal separation stress alone did
not result in anhedonia measured by sucrose preference;
rather, a second stressor during adulthood was necessary to
induce it (98,99). Because both paradigms result in evidence of
stress in the pups, these studies suggest that aberrant pat-
terns of maternal-derived sensory signals, rather than stress
alone, influence the development of the reward circuitry. Hu-
man studies using functional MRI have probed the functional
activation of components of the reward circuitry in individuals
that had experienced early-life adversity and identified several
deficits. For example, decreased activity was observed in the
basal ganglia (100,101), and the development of ventral stria-
tum activation in adolescents exposed to early-life adversity
was attenuated (102). These authors identified a more robust
effect when the stress was experienced earlier in life, indicating
the importance of the timing of the insult (3).

HOW DOES EARLY-LIFE ADVERSITY MODIFY THE
REWARD CIRCUITRY?

Reward circuit function requires the integration and coordi-
nation of molecular, cellular, synaptic, and network signaling.
Failure to mature during sensitive developmental periods may
result in neuropsychiatric disorders. The visual and auditory
iological Psychiatry - -, 2020; -:-–- www.sobp.org/journal 5

http://www.sobp.org/journal


PFC

HC

NAc

Amyg VTA

PVT

‘Normal’ early life experiences Adverse early life experiences

HC

NAc

Amyg VTA

PFC

PVT
?

? ?

A B Figure 4. Proposed changes to CRF1 connec-
tivity of the reward circuitry following early-life
adversity. (A) Connectivity between nodes of the
reward circuitry following normal early-life experi-
ences. (B) Early-life adversity results in aberrant
connectivity of key nodes of the reward circuitry.
Black arrows indicate known connectivity, pink ar-
rows indicate known CRF1 connectivity. Amyg,
amygdala; CRF, corticotropin-releasing factor; HC,
hippocampus; NAc, nucleus accumbens; PFC, pre-
frontal cortex; PVT, paraventricular thalamus; VTA,
ventral tegmental area.
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networks require patterned sensory signals of light and sound
tones, respectively, to strengthen and prune synapses to form
functional circuits (103,104). In parallel, patterns of sensory
signals from the mother early in life may influence the sculpting
of the reward circuitry. There is evidence suggesting that
predictable maternal signals enhance circuit maturation across
species (23). Conversely, unpredictable fragmented maternal
care in rats and mice resulted in manifestations of anhedonia
and in altered amygdala–prefrontal cortex connectivity on MRI
(20,24,96,105). Thus, it is tempting to speculate that early-life
adversity alters the maturation and function of the reward cir-
cuitry via several overlapping mechanisms. First, it leads to
upregulation of CRF expression and neurotransmission in
several nodes such as the basolateral amygdala–NAc and
perhaps others. This aberrant CRF neurotransmission may
disrupt the critically balanced combinatorial signaling within
the circuit (Figure 4). In addition, aberrant sensory signal pat-
terns during sensitive periods may promote inappropriate
synaptic strengthening and pruning within the reward circuit [in
analogy to visual and auditory circuits (106,107)], leading to
aberrant functional signaling of the reward circuitry later in life
(Figure 4).

IDENTIFYING PREDICTIVE MARKERS OF EARLY-
LIFE ADVERSITY

The risk of early-life adversity resulting in susceptibility to
mental illness has led researchers to seek either genetic or
epigenetic predictive markers to enable preventative or inter-
vention approaches. For instance, meta-analysis supported an
association between telomere length and early-life adversity in
humans, and further identified that adversity earlier in devel-
opment resulted in greater negative effects compared with
exposure later in development (108). Genetic susceptibility
might be conferred by variants in molecules involved in the
functions of stress-related hormones. Thus, interactions be-
tween FKBP5 and early-life adversity have been identified as
markers for stress-related disorders including posttraumatic
stress disorder (109), and as mentioned above, polymorphisms
6 Biological Psychiatry - -, 2020; -:-–- www.sobp.org/journal
in the CRHR1 gene were associated with greater depressive
reactivity to chronic stress in those previously exposed to
early-life adversity (110).

A key goal in addressing the consequences of early-life
adversity, and especially those that predict vulnerability or
resilience to subsequent mental illness, is identifying predictive
“signatures” of these consequences. In the rat, distinct pat-
terns of maternal care resulted in differences in histone acet-
ylation and DNA methylation in stress-regulating targets (111),
and brain-derived neurotrophic factor (BDNF) methylation has
been identified as a marker of early-life adversity (112). In hu-
man neonates, the glucocorticoid receptor promoter was more
methylated in newborns exposed to prenatal maternal
depression (113,114). Peripheral indicators of early-life adver-
sity via DNA methylation have been identified in numerous
studies (111,115,116), and more recently, repeated measure-
ment in the same individual was successful in delineating an
epigenetic “scar” of early-life adversity (117). To date, the
relevance of such markers for predicting early-life adversity–
provoked alterations of the reward circuitry is unclear, and
longitudinal prospective imaging studies in humans (118,119)
might uncover imaging changes that predict pathology asso-
ciated with dysregulated reward circuity following this insult.

CONCLUSIONS

There is a strong association between early-life adversity
throughout infancy and early childhood and the subsequent
development of mental illnesses associated with reward cir-
cuitry dysfunction. The key challenge is disentangling the
preexisting genetic factors from the causal role of adversity
and the mechanisms by which it might modify the normal
functional and structural maturation of the reward circuitry.
This goal is important, as it is required for identifying bio-
markers and targets for prevention and intervention.

Experimental animal models and novel circuit technologies
are enabling both hypothesis- and data-driven investigations
of these issues. Because adversity activates and influences the
brain’s “stress system,” focusing on stress-related molecules
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is reasonable, and it is supported by human genomic analyses
(84). The current review focused on aspects of these questions
and investigations, highlighting areas of knowledge gaps.
Notably, a key challenge is discovering sufficient information
about the comparative development of the reward circuitry
across species, which will allow for true translation of clinical
questions to lab-based mechanistic studies, and for the
translation of discoveries in experimental models back to the
clinic.
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