
Measuring predictability: a cross-species approach 

Contact:  Hal Stern, Department of Statistics, University of California, Irvine (sternh@uci.edu) 

 

Background 

Two recent studies, by Molet et al. (2016) and Davis et al. (in press) with rats and humans, 

support the hypothesis that the predictability of maternal signals influences cognitive and 

emotional development. Both studies use a measure of entropy rate to characterize 

predictability of maternal sensory signals.  This document describes the common cross-species 

approach in which maternal sensory signals are represented as a sequence of observed 

behaviors and then the predictability of the sequence is measured through its entropy rate. 

  

Characterizing predictability of maternal sensory signals 

Rodent Data 

Rodent maternal sensory signals were recorded by directly observing the rodent dams (and 

their pups) during 50-minute windows twice per day for eight days.  The set of actions 

considered as characterizing maternal behavior were, licking/grooming the pups (LG), carrying 

pups (C), eating (E), nursing (N), nest building (NB), off pups and no other activities (O), or self-

grooming (SG).  Each dam could only be performing a single behavior at any given time point. 

This provides a continuous time series of the dam’s behavior. Figure 1A is a visualization of this 

time series for one rodent mother.  We combine data from the different observation periods; 

thereby assuming the series of behaviors is a stationary process in time.  The Conte Center 

research program posits that predictability of maternal sensory signals is a critical factor for the 

developing brain.  As a result, we focus on transitions between behaviors.  To do so we ignore 

the duration of a particular behavior and create a discrete-time sequence of distinct behaviors.   

This sequence is illustrated in Figure 1B. 
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Figure 1. 1A displays a visualization of maternal behavior for two 50-minute periods per day 
over postnatal days P2-P9.  Each row of the figure is a different action.  The vertical lines 
crossing all rows in the figure correspond to beginning/ending of the 50-minute windows. Within 
each row, the solid blocks are durations during which each action was performed (these may 
appear as lines if the duration is short enough).  1B is a visualization of transitions in a dam’s 
behavior.  The data are the same as in 1A but each behavior has been reduced to a single dot 
so the duration is not pictured.  Divisions between observation periods are not shown.  

 

The sequence of behaviors can be summarized by considering how often specific transitions 

occur; e.g., how many times self-grooming behavior is followed by nursing.  A matrix can be 

used to organize the transition frequencies with rows indicating the initial behavior in each pair 

of actions and columns the behaviors being transitioned into.  Normalizing each row by the row 

total provides the proportion of time each “column” event follows each “row” event.  These are 

known as transition probabilities.  We visualize this in Figure 2.  Note that because we have 

concatenated results from different observation periods there is a small probability of 

transitioning from a behavior to the same behavior.  The matrix of transition probabilities in 

Figure 2B is the summary of the data that is used to compute the behavioral entropy rate (see 

discussion below). 
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Figure 2. 2A displays in matrix form the number of times a transition occurs from one behavior 
(the row labels) to another (the column labels).  2B shows the corresponding empirical transition 
probability matrix where each row is normalized to have sum one. 

 

Human Data 

In our human research, predictability of maternal sensory signals to the infant is characterized in 

the context of a semi-structured free play session with the mother and her infant. Here we 

overview the basic steps involved in coding maternal signals and using the resulting data to 

develop the transition matrix that is used to calculate entropy rate as an index of predictability of 

maternal signals. 

Mother-child interaction during the ten-minute free play session is digitally recorded. Behaviors 

are then coded to characterize auditory, visual, or tactile sensory signals to the child. Coded 

behaviors that are used to define sensory inputs are listed in Table 1. Because we are 

interested in characterizing patterns of maternal signals, all behaviors are coded continuously in 

real time. For details on coding procedures see the separate coding manual available at the 

Conte Center website (available at https://contecenter.uci.edu).  Figure 3 shows an example of 

data collected from one mother-child pair. The visualization depicts the time series of each of 

the three types of sensory signals (auditory, tactile, visual) during the 10-minute interaction. 
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Table 1 – Description of behaviors used to characterize maternal sensory input to her infant. 

Sensory Signal Actions/Behaviors included 

Auditory Verbal utterances including speech and laughing 

Tactile Touching, holding, supporting or carrying the child 

Visual Manipulating object while child is observing 

 

 

Figure 3. Visualization of the time series of sensory signals coded in the context of a mother 
interacting with her infant during the semi-structured play session.  

 

Note that some maternal behaviors are roughly instantaneous (e.g., a mother’s utterance) while 

others last for an interval of time (e.g., holding a child in the lap).  Because our goal is to identify 

transitions between behaviors, as discussed above in the rodent section, we focused on the 

initiation of behaviors in analyzing the human behavioral data (e.g., initiation of a touch or a 

verbal utterance). It is necessary to standardize identification of discrete behaviors (e.g., to 

identify whether “Look.” “It is a truck.” is one event or two).  We use verbal utterances to 

demonstrate our procedure for doing so. The start of each utterance was initially coded from 

video as a separate event. Thus, the example, “Look.” “It is a truck.” would initially be coded as 

2 events. The instantaneous event time for each utterance was then extended to have a 

duration of 1-second. Thus, each event was right-padded with a one-second duration to 

standardize the lengths of the utterances and then instances that overlapped were merged into 

one event. This means that two maternal utterances separated by 1 second or more were 

characterized as two events and two maternal utterances for which the initiation was separated 

by less than 1 second were characterized as a single event. The result of this can be seen in 

auditory behavior portion of Figure 3. The time interval of one second was chosen based upon 

an empirical investigation of 10 randomly selected videos indicating that the average maternal 

utterance to her infant in this context was one second. This can be modified in the software 
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described below. Although the issue of combining events most frequently affected auditory 

behaviors, a similar approach was applied to other brief events (e.g., affectionate touch). 

The human maternal sensory behaviors are not mutually exclusive (i.e., more than one event 

can happen at the same time). For example, a mother can be speaking while also touching the 

child. The eight possibilities listed in Table 2 illustrate all of the possible combinations. To 

analyze the human data we identify any change between one of these eight sensory 

combinations and another combination as a transition.   

We visualize the resulting sequence of maternal behavior states for one mother in Figure 4A 

(parallel to the rat data in Figure 1A).  As with the rodent, the duration of each state can be 

collapsed, as the “order” of the behaviors is the only thing that is important for assessing 

predictability of transitions between sensory signals. Transitions, therefore, are characterized as 

changes among any of the eight possibilities in Table 2.  We visualize this in Figure 4B (parallel 

to the rat data in Figure 1B). Finally, based upon this sequence of events, the table of transition 

counts and the empirical transition matrix are constructed.  They are provided in Figure 5 

(parallel to the rat data in Figure 2).   

 

Table 2 – Descriptions of behavioral categories used to characterize transitions 

Grouping of Categories New Category Descriptions 

No Behavior No Auditory, Tactile, or Visual Stimulation 

Single Behavior 

Only Auditory Stimulation 

Only Tactile Stimulation 

Only Visual Stimulation 

Combinations of Two Behaviors 

Both Auditory & Tactile Stimulation 

Both Auditory & Visual Stimulation 

Both Visual & Tactile Stimulation 

Combination of All Behaviors All States: Auditory, Tactile, & Visual Stimulation 

 

 

 



 

 

Figure 4. 4A displays the continuous time series of maternal sensory signals in the context of interacting with her 

child and using the eight categories shown in Table 2. Using the eight possible combinations, a time series of 
mutually exclusive behaviors is created, similar to the rodent data in Figure 1A.  4B displays the discrete time series 
of human maternal sensory signals where each sensory signal has been reduced to a single dot so duration is not 
pictured.  This is similar to the rat data shown in Figure 1B. 
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Figure 5. 5A displays in matrix form the number of times a transition occurs from one behavior (or 
combination of behaviors) as indicated by the row label to another as indicated by the column label.   
5B shows the corresponding empirical transition probability matrix where each row is normalized to 
have sum one.  This is similar to the rat data illustrated in Figure 2. 

 

Measuring Degree of Predictability – Entropy & Entropy Rate 

For both the human and rodent data, the empirical transition matrix (Figure 2B, Figure 5B) is a 

summary of the way in which a mother transitions among sensory signals and this matrix has 

significance when modeling behavior.  In our approach the observed sequence of behaviors is 

modeled as a time-homogeneous, first-order stationary Markov chain and the entropy rate of 

this Markov chain serves as our measure of the predictability of the process. A Markov chain is 

a specific type of stochastic process (i.e., a sequence of random variables) with a finite state 

space (i.e., a limited set of behaviors).  In a first-order Markov chain the probability distribution 

of the next observation is related only to the most recently observed behavior or state (i.e., 

earlier behaviors don’t effect the current transition). This is precisely the information contained in 

the matrix of transition probabilities. The assumption of time homogeneity implies that this 

probability function does not change with time, while the stationary assumption implies that in 

the long term the distribution of behaviors will approach a stationary distribution 𝜋 (i.e., a regular 

pattern describing the relative frequency of the different behaviors). The entropy rate of a 

Markov chain is a quantitative measure of the degree to which a future behavior can be 
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predicted from the current behavior.  We provide a brief introduction to the concept and then 

describe how it is calculated for a Markov chain.    

Entropy is a continuous measure that quantifies the predictability of a single random variable 

(see, e.g., Shannon (1948) and Cover and Thomas (2006)).   As an example, consider rolling a 

single die and recording the number of spots observed.  If the die were perfectly fair, each side 

of the die would have equal probability of one-sixth of occurring.  This corresponds to maximum 

entropy and maximum unpredictability.  If the die were such that the same side always landed 

on top, then the die would be perfectly predictable and have zero entropy.  Mathematically, if 𝑋 

is a discrete random variable capable of taking on 𝑘 values and 𝑝𝑖 is the probability of the 𝑖𝑡ℎ 

value, then the entropy 𝐻(𝑋) is computed as  

𝐻(𝑋) =  − ∑ 𝑝𝑖 log2 𝑝𝑖

𝑘

𝑖=1

. 

Entropy rate extends the concept of predictability from a single random variable to sequences of 

random variables. The entropy rate of a first-order Markov chain is calculated from the matrix of 

transition probabilities 𝑃 where 𝑃𝑖𝑗 gives the probability of transitioning from state 𝑖 to state 𝑗 (as 

shown in Figures 2B and 5B, where the row index represents the “from” state and the column 

index represents the “to” state). The entropy rate of a first-order stationary Markov chain is, 

𝐻(𝒳) =  − ∑ 𝜋𝑖𝑃𝑖𝑗 log2 𝑃𝑖𝑗

𝑖𝑗

 

where 𝜋𝑖, 𝑖 = 1, … , 𝐾 is known as the stationary distribution and summarizes the long-run 

characteristics of the process.  There are a number of approaches to finding the stationary 

distribution (see, e.g., Levin et al., 2009).  Entropy rate is a continuous measure bounded 

between zero and log2 𝐾, where 𝐾 is the number of possible states.  Therefore in the rat 

experiment the 𝐻𝑚𝑎𝑥,𝑟𝑎𝑡 = log2 7 = 2.807 and for the human observational study 𝐻𝑚𝑎𝑥,ℎ𝑢𝑚𝑎𝑛 =

log2 8 = 3.   

 

 

 

 



Software for calculating the entropy rate 

A software package for calculating the entropy rate of an observed Markov chain, Conte Center 

Behavioral Entropy Rate (ccber), has been created using the R programming language. The 

package and relevant documentation are available at github.com/bvegetabile/ccber.  The 

package incorporates a number of different functions that assist the user in summarizing an 

observed sequence of behaviors and calculating the entropy rate for the underlying process.  

  

Application Specific Functionality – Behavioral Entropy Rate of Human Data 

The package provides the capability to estimate the behavioral entropy rate (and optionally 

examine diagnostic plots for an individual) from observations recorded in a single Microsoft 

Excel file output from the Observer system (Noldus) (template available by emailing 

NRP@du.edu). In addition, the package provides the functionality to estimate entropy rate for all 

files in a directory (although in this case without the ability to generate diagnostic plots).  The 

README at github.com/bvegetabile/ccber provides an overview of the functions and their 

inputs.   

 

General Functionality – Entropy Rate of Sequences (i.e., relevant to both Rodent Data and 

Human Data) 

If the data are in another format, the package can still be used.  By loading the ccber package 

into R, the user imports the functions that are used for estimating the entropy rate of an 

observed sequence.  To apply these functions, the user is required to create an R object that 

contains the observed sequence of behaviors (e.g., a vector identifying which of the eight 

combinations in Table 2 has been observed such as: 1, 3, 5, 8, 6, 8, 6, 4, ….).  Then a series of 

ccber functions creates the matrix of transition counts as in Figure 5A, creates the matrix of 

transition probabilities as in Figure 5B, calculates the stationary distribution of the process, and 

then finally calculates the entropy rate (or a single function can be used to compute the entropy 

rate directly from the sequence of behaviors.)  The entropy rates for the rodent data of Davis et 

al. (In press) was calculated in this manner.  The README at github.com/bvegetabile/ccber 

provides an example of estimating the entropy rate of a first-order Markov chain using these 

functions.   

https://github.com/bvegetabile/ccber
mailto:NRP@du.edu
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