Measuring predictability: a cross-species approach

Contact: Hal Stern, Department of Statistics, University of California, Irvine (sternh@uci.edu)

Background

Two recent studies, by Molet et al. (2016) and Davis et al. (in press) with rats and humans,
support the hypothesis that the predictability of maternal signals influences cognitive and
emotional development. Both studies use a measure of entropy rate to characterize
predictability of maternal sensory signals. This document describes the common cross-species
approach in which maternal sensory signals are represented as a sequence of observed

behaviors and then the predictability of the sequence is measured through its entropy rate.

Characterizing predictability of maternal sensory signals

Rodent Data

Rodent maternal sensory signals were recorded by directly observing the rodent dams (and
their pups) during 50-minute windows twice per day for eight days. The set of actions
considered as characterizing maternal behavior were, licking/grooming the pups (LG), carrying
pups (C), eating (E), nursing (N), nest building (NB), off pups and no other activities (O), or self-
grooming (SG). Each dam could only be performing a single behavior at any given time point.
This provides a continuous time series of the dam’s behavior. Figure 1A is a visualization of this
time series for one rodent mother. We combine data from the different observation periods;
thereby assuming the series of behaviors is a stationary process in time. The Conte Center
research program posits that predictability of maternal sensory signals is a critical factor for the
developing brain. As a result, we focus on transitions between behaviors. To do so we ignore
the duration of a particular behavior and create a discrete-time sequence of distinct behaviors.

This sequence is illustrated in Figure 1B.
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Figure 1. 1A displays a visualization of maternal behavior for two 50-minute periods per day
over postnatal days P2-P9. Each row of the figure is a different action. The vertical lines
crossing all rows in the figure correspond to beginning/ending of the 50-minute windows. Within
each row, the solid blocks are durations during which each action was performed (these may
appear as lines if the duration is short enough). 1B is a visualization of transitions in a dam’s
behavior. The data are the same as in 1A but each behavior has been reduced to a single dot
so the duration is not pictured. Divisions between observation periods are not shown.

The sequence of behaviors can be summarized by considering how often specific transitions
occur; e.g., how many times self-grooming behavior is followed by nursing. A matrix can be
used to organize the transition frequencies with rows indicating the initial behavior in each pair
of actions and columns the behaviors being transitioned into. Normalizing each row by the row
total provides the proportion of time each “column” event follows each “row” event. These are
known as transition probabilities. We visualize this in Figure 2. Note that because we have
concatenated results from different observation periods there is a small probability of
transitioning from a behavior to the same behavior. The matrix of transition probabilities in
Figure 2B is the summary of the data that is used to compute the behavioral entropy rate (see

discussion below).
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Figure 2. 2A displays in matrix form the number of times a transition occurs from one behavior
(the row labels) to another (the column labels). 2B shows the corresponding empirical transition
probability matrix where each row is normalized to have sum one.

Human Data

In our human research, predictability of maternal sensory signals to the infant is characterized in
the context of a semi-structured free play session with the mother and her infant. Here we
overview the basic steps involved in coding maternal signals and using the resulting data to
develop the transition matrix that is used to calculate entropy rate as an index of predictability of

maternal signals.

Mother-child interaction during the ten-minute free play session is digitally recorded. Behaviors
are then coded to characterize auditory, visual, or tactile sensory signals to the child. Coded
behaviors that are used to define sensory inputs are listed in Table 1. Because we are
interested in characterizing patterns of maternal signals, all behaviors are coded continuously in
real time. For details on coding procedures see the separate coding manual available at the

Conte Center website (available at https://contecenter.uci.edu). Figure 3 shows an example of

data collected from one mother-child pair. The visualization depicts the time series of each of

the three types of sensory signals (auditory, tactile, visual) during the 10-minute interaction.
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Table 1 — Description of behaviors used to characterize maternal sensory input to her infant.

Sensory Signal Actions/Behaviors included
Auditory Verbal utterances including speech and laughing
Tactile Touching, holding, supporting or carrying the child
Visual Manipulating object while child is observing

Mother ID: 38

Auditory

Tactile

Visual

Figure 3. Visualization of the time series of sensory signals coded in the context of a mother
interacting with her infant during the semi-structured play session.

Note that some maternal behaviors are roughly instantaneous (e.g., a mother’s utterance) while
others last for an interval of time (e.g., holding a child in the lap). Because our goal is to identify
transitions between behaviors, as discussed above in the rodent section, we focused on the
initiation of behaviors in analyzing the human behavioral data (e.g., initiation of a touch or a
verbal utterance). It is necessary to standardize identification of discrete behaviors (e.g., to
identify whether “Look.” “It is a truck.” is one event or two). We use verbal utterances to
demonstrate our procedure for doing so. The start of each utterance was initially coded from
video as a separate event. Thus, the example, “Look.” “It is a truck.” would initially be coded as
2 events. The instantaneous event time for each utterance was then extended to have a
duration of 1-second. Thus, each event was right-padded with a one-second duration to
standardize the lengths of the utterances and then instances that overlapped were merged into
one event. This means that two maternal utterances separated by 1 second or more were
characterized as two events and two maternal utterances for which the initiation was separated
by less than 1 second were characterized as a single event. The result of this can be seen in
auditory behavior portion of Figure 3. The time interval of one second was chosen based upon
an empirical investigation of 10 randomly selected videos indicating that the average maternal

utterance to her infant in this context was one second. This can be modified in the software




described below. Although the issue of combining events most frequently affected auditory

behaviors, a similar approach was applied to other brief events (e.g., affectionate touch).

The human maternal sensory behaviors are not mutually exclusive (i.e., more than one event
can happen at the same time). For example, a mother can be speaking while also touching the
child. The eight possibilities listed in Table 2 illustrate all of the possible combinations. To
analyze the human data we identify any change between one of these eight sensory

combinations and another combination as a transition.

We visualize the resulting sequence of maternal behavior states for one mother in Figure 4A
(parallel to the rat data in Figure 1A). As with the rodent, the duration of each state can be
collapsed, as the “order” of the behaviors is the only thing that is important for assessing
predictability of transitions between sensory signals. Transitions, therefore, are characterized as
changes among any of the eight possibilities in Table 2. We visualize this in Figure 4B (parallel
to the rat data in Figure 1B). Finally, based upon this sequence of events, the table of transition
counts and the empirical transition matrix are constructed. They are provided in Figure 5

(parallel to the rat data in Figure 2).

Table 2 — Descriptions of behavioral categories used to characterize transitions

Grouping of Categories New Category Descriptions
No Behavior No Auditory, Tactile, or Visual Stimulation
Only Auditory Stimulation
Single Behavior Only Tactile Stimulation

Only Visual Stimulation

Both Auditory & Tactile Stimulation

Combinations of Two Behaviors  Both Auditory & Visual Stimulation

Both Visual & Tactile Stimulation

Combination of All Behaviors  All States: Auditory, Tactile, & Visual Stimulation
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Figure 4. 4A displays the continuous time series of maternal sensory signals in the context of interacting with her
child and using the eight categories shown in Table 2. Using the eight possible combinations, a time series of
mutually exclusive behaviors is created, similar to the rodent data in Figure 1A. 4B displays the discrete time series
of human maternal sensory signals where each sensory signal has been reduced to a single dot so duration is not
pictured. This is similar to the rat data shown in Figure 1B.



A Transition Counts B Transition Probabilities

NS0 |22|5|6|0|0|0]|o0[ s NS - 0 |0.25 0.06! 0 0
v422|0|0| 0|0 |5]|3]|o0}8l v—H027{ 0|0 |o0 0
TH{6|ofo|o|1|0o 0|0 2 0 0

5 5
§ A-er|o|o|lofl2|2]|0|0fe g 0 0
2 2
SarH{olo||1|o|lo|o|1t2 § 005 0 | 0| o [005
L L
AV 0|57 0|2|0f0]|o0]o0 59 003 0|0 |0 |0
vmHol|l2|1]o]of|o|o|af7 viT o [0.29]0.14| 0 | o | 0 | 0
ATV 4o fololo|o|l1|a|lofs ATV 4 0| o|o]|o]|o |02 0
I I I I I I I I I I I I I I I
NS V. T A AT AV VT NS V. T A AT AV VT
To Action To Action

Figure 5. 5A displays in matrix form the number of times a transition occurs from one behavior (or
combination of behaviors) as indicated by the row label to another as indicated by the column label.
5B shows the corresponding empirical transition probability matrix where each row is normalized to
have sum one. This is similar to the rat data illustrated in Figure 2.

Measuring Degree of Predictability — Entropy & Entropy Rate

For both the human and rodent data, the empirical transition matrix (Figure 2B, Figure 5B) is a
summary of the way in which a mother transitions among sensory signals and this matrix has
significance when modeling behavior. In our approach the observed sequence of behaviors is
modeled as a time-homogeneous, first-order stationary Markov chain and the entropy rate of
this Markov chain serves as our measure of the predictability of the process. A Markov chain is
a specific type of stochastic process (i.e., a sequence of random variables) with a finite state
space (i.e., a limited set of behaviors). In a first-order Markov chain the probability distribution
of the next observation is related only to the most recently observed behavior or state (i.e.,
earlier behaviors don’t effect the current transition). This is precisely the information contained in
the matrix of transition probabilities. The assumption of time homogeneity implies that this
probability function does not change with time, while the stationary assumption implies that in
the long term the distribution of behaviors will approach a stationary distribution = (i.e., a regular
pattern describing the relative frequency of the different behaviors). The entropy rate of a

Markov chain is a quantitative measure of the degree to which a future behavior can be



predicted from the current behavior. We provide a brief introduction to the concept and then

describe how it is calculated for a Markov chain.

Entropy is a continuous measure that quantifies the predictability of a single random variable
(see, e.g., Shannon (1948) and Cover and Thomas (2006)). As an example, consider rolling a
single die and recording the number of spots observed. If the die were perfectly fair, each side
of the die would have equal probability of one-sixth of occurring. This corresponds to maximum
entropy and maximum unpredictability. If the die were such that the same side always landed
on top, then the die would be perfectly predictable and have zero entropy. Mathematically, if X
is a discrete random variable capable of taking on k values and p; is the probability of the it"

value, then the entropy H(X) is computed as

k
HX) = — Zpi log, p;.
i=1

Entropy rate extends the concept of predictability from a single random variable to sequences of
random variables. The entropy rate of a first-order Markov chain is calculated from the matrix of
transition probabilities P where P;; gives the probability of transitioning from state i to state j (as
shown in Figures 2B and 5B, where the row index represents the “from” state and the column

index represents the “to” state). The entropy rate of a first-order stationary Markov chain is,

H(X)= — zniPij log, P;;
ij
where ;i = 1, ..., K is known as the stationary distribution and summarizes the long-run
characteristics of the process. There are a number of approaches to finding the stationary
distribution (see, e.g., Levin et al., 2009). Entropy rate is a continuous measure bounded
between zero and log, K, where K is the number of possible states. Therefore in the rat
experiment the Hy, 4, q: = log, 7 = 2.807 and for the human observational study H,,qx human =

log, 8 = 3.



Software for calculating the entropy rate

A software package for calculating the entropy rate of an observed Markov chain, Conte Center
Behavioral Entropy Rate (ccber), has been created using the R programming language. The

package and relevant documentation are available at github.com/bvegetabile/ccber. The

package incorporates a number of different functions that assist the user in summarizing an

observed sequence of behaviors and calculating the entropy rate for the underlying process.

Application Specific Functionality — Behavioral Entropy Rate of Human Data

The package provides the capability to estimate the behavioral entropy rate (and optionally
examine diagnostic plots for an individual) from observations recorded in a single Microsoft
Excel file output from the Observer system (Noldus) (template available by emailing
NRP@du.edu). In addition, the package provides the functionality to estimate entropy rate for all
files in a directory (although in this case without the ability to generate diagnostic plots). The
README at github.com/bvegetabile/ccber provides an overview of the functions and their

inputs.

General Functionality — Entropy Rate of Sequences (i.e., relevant to both Rodent Data and

Human Data)

If the data are in another format, the package can still be used. By loading the ccber package
into R, the user imports the functions that are used for estimating the entropy rate of an
observed sequence. To apply these functions, the user is required to create an R object that
contains the observed sequence of behaviors (e.g., a vector identifying which of the eight
combinations in Table 2 has been observed such as: 1, 3, 5, 8, 6, 8, 6, 4, ....). Then a series of
ccber functions creates the matrix of transition counts as in Figure 5A, creates the matrix of
transition probabilities as in Figure 5B, calculates the stationary distribution of the process, and
then finally calculates the entropy rate (or a single function can be used to compute the entropy
rate directly from the sequence of behaviors.) The entropy rates for the rodent data of Davis et

al. (In press) was calculated in this manner. The README at github.com/bvegetabile/ccber

provides an example of estimating the entropy rate of a first-order Markov chain using these

functions.
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